Odd Triperfect Numbers Are Divisible By Eleven Distinct Prime Factors

By Masao Kishore

Abstract. We prove that an odd triperfect number has at least eleven distinct prime factors.

1. Introduction. A positive number N is called a triperfect number if $\sigma(N)=3 N$ where $\sigma(N)$ is the sum of the positive divisors of N. Six even triperfect numbers are known:

$$
\begin{aligned}
& 2^{14} \cdot 5 \cdot 7 \cdot 19 \cdot 31 \cdot 151 \\
& 2^{13} \cdot 3 \cdot 11 \cdot 43 \cdot 127 \\
& 2^{9} \cdot 3 \cdot 11 \cdot 31 \\
& 2^{8} \cdot 5 \cdot 7 \cdot 19 \cdot 37 \cdot 73 \\
& 2^{5} \cdot 3 \cdot 7 \\
& 2^{3} \cdot 3 \cdot 5
\end{aligned}
$$

However, the existence of an odd triperfect (OT) number is an open question. McDaniel [4] and Cohen [2] proved that an OT number has at least nine distinct prime factors; the author proved that it has at least ten prime factors [3], and Beck and Najar [1] showed that it exceeds 10^{50}.
In this paper we prove
Theorem. If N is $O T, N$ has at least eleven distinct prime factors.
2. Proof of Theorem. Throughout this paper we let

$$
N=\prod_{i=1}^{10} p_{i}^{a_{i}}
$$

where p_{i} 's are odd primes, $p_{1}<\cdots<p_{10}$ and a_{i} 's are positive integers. We call $p_{i}^{a_{i}}$ a component of N and write $p_{i}^{a_{i}} \| N$.

The following lemmas are easy to prove:
Lemma 1. If N is $O T, a_{i}$'s are even for $1 \leqslant i \leqslant 10$.
Lemma 2. If N is $O T$ and q is a prime factor of $\sigma\left(p_{i}^{a_{1}}\right)$ for some i, then $q=3$ or $q=p_{j}$ for some $j, 1 \leqslant j \leqslant 10$.

The following lemmas are stated in [5].

[^0]Lemma 3. Suppose q is a prime, $q \geqslant 2$ and $a \geqslant 1$. Then $\sigma\left(q^{a}\right)$ has a prime factor p such that $a+1$ is the order of q modulo p except for $q=2$ and $a=5$ and for $q=a$ Mersenne prime and $a=1$. In particular $a+1 \mid p-1$.

Lemma 4. Suppose p is a Fermat prime (3,5,17, etc.), q is an odd prime and a is even. If $p^{b} \mid \sigma\left(q^{a}\right)$, then $q \equiv 1(p), p^{b} \mid a+1$, and $\sigma\left(q^{a}\right)$ has b distinct prime factors congruent to 1 modulo p.

Lemma 5. If N is $O T, 17+N$.
Proof. Suppose N is OT. Since the three smallest primes $\equiv 1$ (17) are 103, 137, and 239 and

$$
\frac{3}{2} \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{19}{18} \frac{103}{102} \frac{137}{136} \frac{239}{238}<3
$$

N has at most two primes $\equiv 1$ (17). Suppose p^{a} and q^{b} are components of N and $p \equiv q \equiv 1(17)$. If $17^{c} \mid N$ and $c \geqslant 4$, then $17^{2} \mid \sigma\left(p^{a}\right)$ or $17^{2} \mid \sigma\left(q^{b}\right)$, and, by Lemma $4, N$ would have two more primes $\equiv 1(17)$, a contradiction. Hence $17^{4}+N$. Suppose $17^{2} \| N$. Then N has a component 307^{d} because $\sigma\left(17^{2}\right)=307$. Then $17+\sigma\left(307^{d}\right)$ because $16661 \cdot 36857\left|\sigma\left(307^{16}\right), \sigma\left(307^{16}\right)\right| \sigma\left(307^{d}\right)$ and

$$
\frac{3}{2} \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{19}{18} \frac{307}{306} \frac{16661}{16660} \frac{36857}{36856}<3
$$

Hence N has another component p^{b} such that $17^{2} \mid \sigma\left(p^{b}\right)$. Then we get a contradiction again. Hence $17+N$. Q.E.D.

The proof of the following lemma is easy.
Lemma 6. If N is $O T, p_{9} \leqslant 283$.
Lemma 7. If N is $O T$ and $5^{a}| | N$, then $a=2,5^{2} \mid \sigma\left(P_{10}^{a_{10}}\right)$ and $p_{10} \geqslant 311$.
Proof. Suppose N is OT, p^{b} is a component of N and $5 \mid \sigma\left(p^{b}\right)$. By Lemma 4, $p \equiv$ $1(5), 5 \mid b+1$ and $\sigma\left(p^{4}\right) \mid \sigma\left(p^{b}\right)$. If $61 \leqslant p \leqslant 281$, then
$\sigma\left(p^{4}\right)$ has a prime factor q such that

$$
\frac{3}{2} \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{19}{18} \frac{23}{22} \frac{29}{28} \frac{p}{p-1} \frac{q}{q-1}<3 \text {, or }
$$

$\sigma\left(p^{4}\right)$ has prime factors q and r such that

$$
\frac{3}{2} \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{19}{18} \frac{23}{22} \frac{p}{p-1} \frac{q}{q-1} \frac{r}{r-1}<3
$$

Hence $p=11,31$ or 41 or $p \geqslant 311$.
Suppose $p=11,31$ or 41. If $5^{2}\left|\sigma\left(p^{b}\right), 5^{2}\right| b+1$ by Lemma 4. Then $\sigma\left(p^{24}\right) \mid \sigma\left(p^{b}\right)$ and $\sigma\left(p^{24}\right)$ has two distinct prime factors >283, contradicting Lemma 6. Hence $5^{2}+\sigma\left(p^{b}\right)$. Since $3221\left|\sigma\left(11^{4}\right), 17351\right| \sigma\left(31^{4}\right)$ and 579281| $\sigma\left(41^{4}\right)$, $5^{2}+\sigma\left(\Pi_{i=1}^{9} p_{i}^{a_{i}}\right)$ and $p_{10}=3221,17351$ or 579281 and $5 \mid \sigma\left(p_{10}^{a_{10}}\right)$. However, $\sigma\left(p_{10}^{4}\right)$ has a prime factor >283, contradicting Lemma 6. Hence $p \geqslant 311$ and $5^{a} \mid \sigma\left(p^{b}\right)$.

If $a \geqslant 4$, then by Lemma $4, N$ would have four more primes $\equiv 1(5)$, which is a contradiction because

$$
\frac{3}{2} \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{19}{18} \frac{31}{30} \frac{41}{40} \frac{61}{60} \frac{311}{310}<3
$$

Hence $a=$ 2. Q.E.D.

Lemma 8. If N is $O T, p_{9} \leqslant 71$.
Proof. By Lemma 6, $31=\sigma\left(5^{2}\right) \mid N$. Since

$$
\frac{3}{2} \frac{\sigma\left(5^{2}\right)}{5^{2}} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{19}{18} \frac{23}{22} \frac{31}{30} \frac{73}{72} \frac{311}{310}<3
$$

$p_{9} \leqslant 71$. Q.E.D.
Proof of Theorem. If N is OT, then by Lemmas 4 and $7,5^{2}\left|\sigma\left(p_{10}^{a_{10}}\right), 5^{2}\right| a_{10}+1$ and $\sigma\left(p_{10}^{24}\right) \mid\left(p_{10}^{a_{10}}\right)$. By Lemma 3, $\sigma\left(p_{10}^{24}\right)$ has a prime factor q such that $25 \mid q-1$. Hence $q=25 b+1$ for some b. Since q is a prime, $b \neq 1$ or 2 . Then $q>71$ and $q \neq p_{10}$, contradicting Lemma 8. Q.E.D.

Department of Mathematics
East Carolina University
Greenville, North Carolina 27834

1. W. E. Beck \& R. M. Najar, "A lower bound for odd triperfects," Math. Comp., v. 38, 1982, pp. 249-251.
2. G. L. COHEN, "On odd perfect numbers II, Multiperfect numbers and quasiperfect numbers," J. Austral. Math. Soc., v. 29, 1980, pp. 369-384.
3. M. Kishore, "Odd triperfect numbers," Math. Comp., v. 42, 1984, pp. 231-233.
4. W. McDaniel, "On odd multiply perfect numbers," Boll. Un. Mat. Ital. (4), v. 3, 1970, pp. 185-190.
5. C. Pomerance, "Odd perfect numbers are divisible by at least seven distinct primes," Acta Arith., v. 25, 1973/1974, pp. 265-300.

[^0]: Received April 4, 1983; revised June 5, 1984.
 1980 Mathematics Subject Classification. Primary 10A20.

