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Odd Triperfect Numbers Are Divisible 
By Eleven Distinct Prime Factors 

By Masao Kishore 

Abstract. We prove that an odd triperfect number has at least eleven distinct prime factors. 

1. Introduction. A positive number N is called a triperfect number if a(N) = 3N 
where a(N) is the sum of the positive divisors of N. Six even triperfect numbers are 
known: 

214 5 7 . 19 * 31 * 151, 
213 3 11 * 43 127, 
29 3 11 * 31, 
28 5 7 * 19 37 *73, 
25 3 * 7, 
23 3 5. 

However, the existence of an odd triperfect (OT) number is an open question. 
McDaniel [4] and Cohen [2] proved that an OT number has at least nine distinct 
prime factors; the author proved that it has at least ten prime factors [3], and Beck 
and Najar [1] showed that it exceeds 105?. 

In this paper we prove 

THEOREM. If N is OT, N has at least eleven distinct prime factors. 

2. Proof of Theorem. Throughout this paper we let 

10 

N= lpi' 
i=1 

where pi's are odd primes, P1 < ... < Pio and ai's are positive integers. We call p a, 

a component of N and write p a, I I N. 
The following lemmas are easy to prove: 

LEMMA 1. If N is OT, a 's are even for 1 < i < 10. 

LEMMA 2. If N is OT and q is a prime factor of a(pia) for some i, then q = 3 or 

q=pjforsomej,1 <j < 10. 

The following lemmas are stated in [5]. 
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LEMMA 3. Suppose q is a prime, q > 2 and a > 1. Then a (qa) has a prime factor p 

such that a + 1 is the order of q modulo p except for q = 2 and a = 5 and for q = a 

Mersenne prime and a = 1. In particular a + 1 I p - 1. 

LEMMA 4. Suppose p is a Fermat prime (3, 5,17, etc.), q is an odd prime and a is 

even. If pb I a(qa), then q 1 (p), pb a + 1, and a(qa) has b distinct prime factors 

congruent to 1 modulo p. 

LEMMA 5. If N is OT, 17 + N. 

Proof. Suppose N is OT. Since the three smallest primes 1 (17) are 103, 137, 

and 239 and 
3 5 7 11 13 17 19 103 137 239 -<3 
2 4 6 10 12 16 18 102 136 238 

N has at most two primes 1 (17). Suppose pa and qb are components of N and 

p q 1 (17). If 17c I N and c > 4, then 1721 a(pa) or 1721 a(qb), and, by Lemma 

4, N would have two more primes 1 (17), a contradiction. Hence 174 + N. Suppose 

172 l I N. Then N has a component 307d because a(172) = 307. Then 17 + a(307d) 

because 16661 * 36857 I a(307'6), a(307'6) l a(307d) and 

3 5 7 11 13 17 19 307 16661 36857 < 3. 
2 4 6 10 12 16 18 306 16660 36856 

Hence N has another component pb such that 172 a(p b). Then we get a contradic- 

tion again. Hence 17 + N. Q.E.D. 
The proof of the following lemma is easy. 

LEMMA 6. If N is OT, p9 < 283. 

LEMMA 7. If N is OTand 5a N, then a = 2, 52 a(Pajo) andpl0 > 311. 

Proof. Suppose N is OT, pb is a component of N and 5 I a(pb). By Lemma 4, p 

1 (5),5 b + I and a(p4) 1 a(pb). If 61 < p < 281, then 
a( p4) has a prime factor q such that 

3 5 7 11 13 19 23.29 p q < 3 or 
2 4 6 10 12 18 22 28 p - I q - 1 

a( p4) has prime factors q and r such that 

3 5 7 11 13 19 23 p q r 
2 4 6 10- 12 18 22 p-I q -1 r -1 

Hencep = 11, 31 or 41 orp > 311. 
Suppose p = 11, 31 or 41. If 52 2a(pb) 52 1 b + 1 by Lemma 4. Then 

(a(p24) 1 a( pb) and a(p24) has two distinct prime factors > 283, contradicting 
Lemma 6. Hence 52 t a(pb). Since 3221 I a(114), 17351 1 a(314) and 579281 1 a(414), 

52+ a(F19=I pia ) and plo = 3221, 17351 or 579281 and 5 1 a(p%ao). However, a(P 4) 

has a prime factor > 283, contradicting Lemma 6. Hence p > 311 and Sa I a(pb). 

If a > 4, then by Lemma 4, N would have four more primes 1 (5), which is a 

contradiction because 
3 5 7 11 13 19 31 41 61 311 3 
2 4 6 10 12 18 30 40 60 310 

Hence a = 2. Q.E.D. 
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LEMMA 8. If N is OT, p9 71. 

Proof. By Lemma 6, 31 = a(52) I N. Since 

3 a(5 2) 7 11 13 19 23 31 73 311 
2 52 6 10 12 18 22 30 72 310 

pq < 71. Q.E.D. 
Proof of Theorem. If N is OT, then by Lemmas 4 and 7, 521 a(p'ppo) 52 1 al0 + 1 

and G(p24) I(pa ). By Lemma 3, a(p24) has a prime factor q such that 251 q - 1. 
Hence q = 25b + 1 for some b. Since q is a prime, b 0 1 or 2. Then q> 71 and 
q # Plo, contradicting Lemma 8. Q.E.D. 
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